3.3.77 \(\int \frac {x^3 (a+b \log (c x^n))}{\sqrt {d+e x^2}} \, dx\) [277]

3.3.77.1 Optimal result
3.3.77.2 Mathematica [A] (verified)
3.3.77.3 Rubi [A] (verified)
3.3.77.4 Maple [F]
3.3.77.5 Fricas [A] (verification not implemented)
3.3.77.6 Sympy [A] (verification not implemented)
3.3.77.7 Maxima [F(-2)]
3.3.77.8 Giac [F]
3.3.77.9 Mupad [F(-1)]

3.3.77.1 Optimal result

Integrand size = 25, antiderivative size = 129 \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\frac {2 b d n \sqrt {d+e x^2}}{3 e^2}-\frac {b n \left (d+e x^2\right )^{3/2}}{9 e^2}-\frac {2 b d^{3/2} n \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2} \]

output
-1/9*b*n*(e*x^2+d)^(3/2)/e^2-2/3*b*d^(3/2)*n*arctanh((e*x^2+d)^(1/2)/d^(1/ 
2))/e^2+1/3*(e*x^2+d)^(3/2)*(a+b*ln(c*x^n))/e^2+2/3*b*d*n*(e*x^2+d)^(1/2)/ 
e^2-d*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/e^2
 
3.3.77.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.12 \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\frac {-6 a d \sqrt {d+e x^2}+5 b d n \sqrt {d+e x^2}+3 a e x^2 \sqrt {d+e x^2}-b e n x^2 \sqrt {d+e x^2}+6 b d^{3/2} n \log (x)+3 b \left (-2 d+e x^2\right ) \sqrt {d+e x^2} \log \left (c x^n\right )-6 b d^{3/2} n \log \left (d+\sqrt {d} \sqrt {d+e x^2}\right )}{9 e^2} \]

input
Integrate[(x^3*(a + b*Log[c*x^n]))/Sqrt[d + e*x^2],x]
 
output
(-6*a*d*Sqrt[d + e*x^2] + 5*b*d*n*Sqrt[d + e*x^2] + 3*a*e*x^2*Sqrt[d + e*x 
^2] - b*e*n*x^2*Sqrt[d + e*x^2] + 6*b*d^(3/2)*n*Log[x] + 3*b*(-2*d + e*x^2 
)*Sqrt[d + e*x^2]*Log[c*x^n] - 6*b*d^(3/2)*n*Log[d + Sqrt[d]*Sqrt[d + e*x^ 
2]])/(9*e^2)
 
3.3.77.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.95, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2792, 27, 354, 90, 60, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx\)

\(\Big \downarrow \) 2792

\(\displaystyle -b n \int -\frac {\left (2 d-e x^2\right ) \sqrt {e x^2+d}}{3 e^2 x}dx+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b n \int \frac {\left (2 d-e x^2\right ) \sqrt {e x^2+d}}{x}dx}{3 e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {b n \int \frac {\left (2 d-e x^2\right ) \sqrt {e x^2+d}}{x^2}dx^2}{6 e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {b n \left (2 d \int \frac {\sqrt {e x^2+d}}{x^2}dx^2-\frac {2}{3} \left (d+e x^2\right )^{3/2}\right )}{6 e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {b n \left (2 d \left (d \int \frac {1}{x^2 \sqrt {e x^2+d}}dx^2+2 \sqrt {d+e x^2}\right )-\frac {2}{3} \left (d+e x^2\right )^{3/2}\right )}{6 e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {b n \left (2 d \left (\frac {2 d \int \frac {1}{\frac {x^4}{e}-\frac {d}{e}}d\sqrt {e x^2+d}}{e}+2 \sqrt {d+e x^2}\right )-\frac {2}{3} \left (d+e x^2\right )^{3/2}\right )}{6 e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^2}-\frac {d \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^2}+\frac {b n \left (2 d \left (2 \sqrt {d+e x^2}-2 \sqrt {d} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )\right )-\frac {2}{3} \left (d+e x^2\right )^{3/2}\right )}{6 e^2}\)

input
Int[(x^3*(a + b*Log[c*x^n]))/Sqrt[d + e*x^2],x]
 
output
(b*n*((-2*(d + e*x^2)^(3/2))/3 + 2*d*(2*Sqrt[d + e*x^2] - 2*Sqrt[d]*ArcTan 
h[Sqrt[d + e*x^2]/Sqrt[d]])))/(6*e^2) - (d*Sqrt[d + e*x^2]*(a + b*Log[c*x^ 
n]))/e^2 + ((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/(3*e^2)
 

3.3.77.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2792
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x] 
}, Simp[(a + b*Log[c*x^n])   u, x] - Simp[b*n   Int[SimplifyIntegrand[u/x, 
x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2] 
) || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x 
] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])
 
3.3.77.4 Maple [F]

\[\int \frac {x^{3} \left (a +b \ln \left (c \,x^{n}\right )\right )}{\sqrt {e \,x^{2}+d}}d x\]

input
int(x^3*(a+b*ln(c*x^n))/(e*x^2+d)^(1/2),x)
 
output
int(x^3*(a+b*ln(c*x^n))/(e*x^2+d)^(1/2),x)
 
3.3.77.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.60 \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\left [\frac {3 \, b d^{\frac {3}{2}} n \log \left (-\frac {e x^{2} - 2 \, \sqrt {e x^{2} + d} \sqrt {d} + 2 \, d}{x^{2}}\right ) + {\left (5 \, b d n - {\left (b e n - 3 \, a e\right )} x^{2} - 6 \, a d + 3 \, {\left (b e x^{2} - 2 \, b d\right )} \log \left (c\right ) + 3 \, {\left (b e n x^{2} - 2 \, b d n\right )} \log \left (x\right )\right )} \sqrt {e x^{2} + d}}{9 \, e^{2}}, \frac {6 \, b \sqrt {-d} d n \arctan \left (\frac {\sqrt {-d}}{\sqrt {e x^{2} + d}}\right ) + {\left (5 \, b d n - {\left (b e n - 3 \, a e\right )} x^{2} - 6 \, a d + 3 \, {\left (b e x^{2} - 2 \, b d\right )} \log \left (c\right ) + 3 \, {\left (b e n x^{2} - 2 \, b d n\right )} \log \left (x\right )\right )} \sqrt {e x^{2} + d}}{9 \, e^{2}}\right ] \]

input
integrate(x^3*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="fricas")
 
output
[1/9*(3*b*d^(3/2)*n*log(-(e*x^2 - 2*sqrt(e*x^2 + d)*sqrt(d) + 2*d)/x^2) + 
(5*b*d*n - (b*e*n - 3*a*e)*x^2 - 6*a*d + 3*(b*e*x^2 - 2*b*d)*log(c) + 3*(b 
*e*n*x^2 - 2*b*d*n)*log(x))*sqrt(e*x^2 + d))/e^2, 1/9*(6*b*sqrt(-d)*d*n*ar 
ctan(sqrt(-d)/sqrt(e*x^2 + d)) + (5*b*d*n - (b*e*n - 3*a*e)*x^2 - 6*a*d + 
3*(b*e*x^2 - 2*b*d)*log(c) + 3*(b*e*n*x^2 - 2*b*d*n)*log(x))*sqrt(e*x^2 + 
d))/e^2]
 
3.3.77.6 Sympy [A] (verification not implemented)

Time = 12.28 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.83 \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=a \left (\begin {cases} - \frac {2 d \sqrt {d + e x^{2}}}{3 e^{2}} + \frac {x^{2} \sqrt {d + e x^{2}}}{3 e} & \text {for}\: e \neq 0 \\\frac {x^{4}}{4 \sqrt {d}} & \text {otherwise} \end {cases}\right ) - b n \left (\begin {cases} \frac {2 d^{\frac {3}{2}} \operatorname {asinh}{\left (\frac {\sqrt {d}}{\sqrt {e} x} \right )}}{3 e^{2}} - \frac {2 d^{2}}{3 e^{\frac {5}{2}} x \sqrt {\frac {d}{e x^{2}} + 1}} - \frac {2 d x}{3 e^{\frac {3}{2}} \sqrt {\frac {d}{e x^{2}} + 1}} + \frac {\begin {cases} \frac {d \sqrt {d + e x^{2}}}{3 e} + \frac {x^{2} \sqrt {d + e x^{2}}}{3} & \text {for}\: e \neq 0 \\\frac {\sqrt {d} x^{2}}{2} & \text {otherwise} \end {cases}}{3 e} & \text {for}\: e > -\infty \wedge e < \infty \wedge e \neq 0 \\\frac {x^{4}}{16 \sqrt {d}} & \text {otherwise} \end {cases}\right ) + b \left (\begin {cases} - \frac {2 d \sqrt {d + e x^{2}}}{3 e^{2}} + \frac {x^{2} \sqrt {d + e x^{2}}}{3 e} & \text {for}\: e \neq 0 \\\frac {x^{4}}{4 \sqrt {d}} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )} \]

input
integrate(x**3*(a+b*ln(c*x**n))/(e*x**2+d)**(1/2),x)
 
output
a*Piecewise((-2*d*sqrt(d + e*x**2)/(3*e**2) + x**2*sqrt(d + e*x**2)/(3*e), 
 Ne(e, 0)), (x**4/(4*sqrt(d)), True)) - b*n*Piecewise((2*d**(3/2)*asinh(sq 
rt(d)/(sqrt(e)*x))/(3*e**2) - 2*d**2/(3*e**(5/2)*x*sqrt(d/(e*x**2) + 1)) - 
 2*d*x/(3*e**(3/2)*sqrt(d/(e*x**2) + 1)) + Piecewise((d*sqrt(d + e*x**2)/( 
3*e) + x**2*sqrt(d + e*x**2)/3, Ne(e, 0)), (sqrt(d)*x**2/2, True))/(3*e), 
(e > -oo) & (e < oo) & Ne(e, 0)), (x**4/(16*sqrt(d)), True)) + b*Piecewise 
((-2*d*sqrt(d + e*x**2)/(3*e**2) + x**2*sqrt(d + e*x**2)/(3*e), Ne(e, 0)), 
 (x**4/(4*sqrt(d)), True))*log(c*x**n)
 
3.3.77.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^3*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.77.8 Giac [F]

\[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} x^{3}}{\sqrt {e x^{2} + d}} \,d x } \]

input
integrate(x^3*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)*x^3/sqrt(e*x^2 + d), x)
 
3.3.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d+e x^2}} \, dx=\int \frac {x^3\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{\sqrt {e\,x^2+d}} \,d x \]

input
int((x^3*(a + b*log(c*x^n)))/(d + e*x^2)^(1/2),x)
 
output
int((x^3*(a + b*log(c*x^n)))/(d + e*x^2)^(1/2), x)